16. A polynomial is shown below.

$$x^2 + 2x + (-24)$$

- Factor the polynomial. $x^2 + 2x - 24$ (x+6)(x-4)
- B. Explain why the polynomial is not the difference of squares. A difference of 2 squares is a bilionial, not a tribonial. 24,3 not a perfect square.

C. Use one of your factors from Part A to write a polynomial that is the difference

Constructed Response

A. Add and simplify: $(6x^2-x+8)+(3x-4)$

Gx2+2x+4

B. Multiply and simplify: $(x-2)(4x^2+3x-2)$. Show your work and write your answer in descending order.

$$\frac{4x^{3}+3x^{2}-2x}{-8x^{2}-6x+4}$$

$$\frac{4x^{3}-5x^{2}-8x+4}{4x^{3}-5x^{2}-8x+4}$$

4x3-5x2-8x+4

C. Error Analysis: Describe and correct the error made in factoring the equation below.

$$175x^2 - 28 = 7(25x^2 - 4)$$

$$7(5x - 2)(5x - 2)$$

What was incorrect? Why was it incorrect? How do you correct it?

A difference of 2 squares should have a position & regative binarial factor.

) [7(5x+2)(5x-2)

4. An engineer is designing a solar panel in the shape of a rectangle. The length and width are described by monomials, as shown in the diagram.

A Write an expression in simplest terms for the area of the rectangle.

B If x = 2 and $y = \frac{1}{2}$, what is the area of the rectangle? Show all your work.

- 5. The following expressions all use the same values for n, p, and q.
 - $3^2 \cdot 3^n$ simplifies to 3^{20} .
 - $\frac{7^n}{7^n}$ simplifies to 7^p .
 - $(4^p \cdot 4^1)^3$ simplifies to 4^q .
 - A What is the value of the exponent n?

$$3^2 \cdot 3^2 = 3^{2+1} = 3^{20}$$

Answer: 18

2+n = 20 -2 (n=18)

B What is the value of the exponent p?

$$\frac{7^{18}}{7^{5}} = 7^{18-5} = 7^{13-5}$$

Answer: ____13__

 \mathbb{C} What is the value of the exponent q?

D Explain how you found your answers.

I applied rules for exponents.

Part A, add exponents when multiply expression with some base.

Part B, southfast exponents when dividing expression with some base.

Part C, multiply exponents when raising a power to a power.

Unit 1 Operations with Real Numbers and Expressions, Part 1

The Continental Press, Inc. DUPLICATING THIS MATERIAL IS ILLEGAL.

 A manufacturer makes rectangular blankets in several styles and sizes. The outline of a popular blanket in size A is shown below.

A Write a polynomial expression, in simplified form, that represents the perimeter of the blanket.

B Write a polynomial expression, in simplified form, that represents the area of the blanket.

C The same style blanket in size B has width 2x + 10 and length 4x - 10.

Write a polynomial expression, in simplified form, that expresses the difference in area of the blankets A and B.

4. A physicist needs to know the values of x for which the trinomial below equals zero. Her first step is to factor the trinomial.

$$x^2 + 10x + 24$$

A Factor the trinomial.

B Explain how you found your answer to part A.

Factors of 24 [4.6] H.t add to 10 Tyter.

C The physicist also needs to factor the trinomial below.

$$x^2 - 10x + 24$$

What is the factored form of the trinomial?

$$(x-6)(x-4)$$

(X-6)(X-4

D The physicist must factor several trinomials that are all of the form $x^2 - mx + n$, where m and n are whole numbers greater than zero. She wonders if any of these trinomials factor as (x + a)(x + b), where a > 0 and b < 0. Is that possible? Explain why or why not.

A B C Y $-MX + \cap$

Since Cis positile and Bis

need to be negative (X-a)(X-b)

regative, the factors of each Dinorial

She cannot have factors in the form She imagined because one would be posifile.

5. A manufacturing company uses the expressions below to estimate revenue and expenses based on the production of n units.

Revenue: $20n^2 - 180$

Expenses: $4n^2 + 36n + 72$

The ratio of revenue to expenses is given by the rational expression below.

$$\frac{20n^2 - 180}{4n^2 + 36n + 72} = \frac{20(n^2 - 9)}{4(n^2 + 9n + 18)} = \frac{20(n^2 - 9)}{4(n + 6)(n + 3)}$$

A Factor the numerator and denominator of the rational expression, and simplify if possible. Show your work,

$$= \frac{5(n-3)}{n+6}$$

$$= \frac{5n-15}{n+6}$$

Answer: 50-15 0+6

B The rational expression $\frac{20n^2 - 180}{4n^2 + 36n + 72}$ is not defined for any values of n for which the denominator equals zero. Find the values of n for which the denominator equals zero. $U_{n}^{-2} + 36n + 72 = 4(n+3)(n+3)$

Answer:
$$\left(\frac{-3}{-3} \right)$$

C The company accountant says that the rational expression $\frac{20n^2 - 180}{4n^2 + 36n + 72}$ will never have a zero denominator because n, the number of units, is always a whole number. Explain why the accountant is correct.

The denominator is only 0 if n = -6, -3. If n can only be

a whole number, the account is correct

because whole #'s are only + or o

Unit 2 Operations with Real Numbers and Expressions, Part 2