Name:_

 Reid's Hardware discounts all riding lawnmowers 9% to customers paying in cash. If Trey paid \$1,187.64 in cash for a riding lawnmower, which of the following equations can be used to determine the original price of the lawnmower?

(Let x represent the original price of the lawnmower and y represent the discounted price.)

- A. y = 1.09x
 B. y = 0.91x
- **C**. y = x 9x
- **D.** *y* = 1.9*x*
- 2. The Bedrock water department has a monthly service charge of \$7.80 and a volume charge of \$1.15 for every 100 cubic feet of water. Which of the following equations can be used to determine the Sandstone family's monthly water bill?

(Let x represent 100 cubic feet of water and y represent the monthly cost.)

- **A.** *y* = 8.95*x*
- **B.** *y* = 1.15*x* 7.80
- **C.** *y* = 0.0115*x* + 7.80
- **D.** *y* = 1.15*x* + 7.80
- 3. Matt and Casey are wrapping gifts. They bought x rolls of wrapping paper and y packages of ribbon. They spent a total of \$33. The equation below describes the relationship between the number of rolls of wrapping paper and the number of packages of ribbon purchased.

6x + 3y = 33

The ordered pair (3, 5) is a solution of the equation. What does the solution (3, 5) represent?

- A. Matt and Casey purchased 3 rolls of wrapping paper and 5 packages of ribbon.
- B. A package of ribbon costs \$2 more than a roll of wrapping paper.
- C. Matt and Casey purchased 5 rolls of wrapping paper and 3 packages of ribbon.
- D. Matt and Casey spent \$3 on wrapping paper and \$5 on ribbon.
- 4. Solve for p.

olve for *p*.

$$\frac{4p-26}{3} = 2$$

B. $p = 21$
C. $p = -5$
D. $p = 7$

5. Solve for x. 8(x + 4) + 6(x + 4) = 6x - 6

- **A**. $x = \frac{7}{4}$
- **B**. x = 8
- **c**. $x = -\frac{31}{4}$
- **D.** $x = -\frac{31}{10}$

6. Solve for x. 7x - 1 = 6x + 7x + 2• A. $x = \frac{1}{2}$ • B. $x = -\frac{1}{14}$

C. $x = -\frac{1}{2}$

D.
$$x = \frac{1}{14}$$

- 7. Solve for x. 33x + 1 = 21x + 72x + 7
 - A. $x = -\frac{2}{5}$ • B. $x = -\frac{1}{10}$ • C. $x = -\frac{14}{5}$ • D. $x = \frac{1}{12}$
- 8. Sam is solving an equation. His work is shown below:

 $\begin{array}{l} 6x + (6x + 10) = 42 \\ (6x + 6x) + 10 = 42 \\ 12x + 10 = 42 \end{array}$

Which statement describes the procedure Harvey used in his work and which property justifies the procedure?

- A. Sam regrouped the terms to multiply 6x and 6x. This procedure is justified by the commutative property.
- B. Sam regrouped the terms to add 6x + 6x. This procedure is justified by the associative property.
- C. Sam regrouped the terms to add 6x and 6x and 10. This procedure is justified by the commutative property.
- D. Sam regrouped the terms to multiply 6x and 6x by 10. This procedure is justified by the associative property.

- 9. Solve the following compound inequality. $3x + 6 \le -9$ OR 4x 9 > 3
 - A. -5 ≤ x < 3</p>
 - **B.** $x \le -5$ OR x > 3
 - **C**. $x \le -6$ OR x > 4
 - O D. x ≤ -5

10. Which of the following number lines shows the solution to the compound inequality given below' 2x - 7 > 1 OR $-3x \le -21$

11. Which of the following number lines shows the solution to the compound inequality given below? -6x + 6 < 42 AND $3x - 4 \le 11$

12. The junior class has been selling roses as an ongoing fundraiser. Roses sell for \$3.75 each and, to date, they have raised \$2,005.82. They would like to raise a total of \$2,909.57 by the end of the year. If this situation is modeled by the inequality below, how many more roses, *x*, do they need to sell to raise at least \$2,909.57?

 $2,005.82 + $3.75x \ge $2,909.57$

- A. The junior class would need to sell at most 241 roses.
- B. The junior class would need to sell at least 241 roses.
- C. The junior class would need to sell at most 776 roses.
- D. The junior class would need to sell at most 535 roses.
- 13. Which of the following number lines shows the solution to the compound inequality given below -4x 4 < 0 OR -3x < 27

14. Which of the following number lines shows the solution to the compound inequality given below? -10 > -2x + 6 > -34

15. Brandon writes math problems for a publishing company. This week he has already written 21 problems. There are 2 days left in the work week. He set a goal for himself to write at least 31 problems this week. If this situation is modeled by the inequality below, what is the average number of problems, *x*, he needs to write each of the remaining work days in order to reach his goal?

 $21 + 2x \ge 31$

- A. Brandon needs to write an average of at least 5 problems each of the remaining work days this week.
- B. Brandon needs to write an average of at most 3 problems each of the remaining work days this week.
- C. Brandon needs to write an average of at most 26 problems each of the remaining work days this week.
- D. Brandon needs to write an average of at most 5 problems each of the remaining work days this week.
- **16.** Solve the following inequality. $-2|5 x| \le -10$
 - **A.** $x \ge 10 \text{ or } x \le 0$
 - **B.** $x \leq 10 \text{ or } x \geq 0$
 - \mathbf{O} **C**. $x \leq 0$
 - **D.** $0 \le x \le 10$

• A. $x = \frac{4}{15}$ • B. $x = \frac{4}{3}$ • c. x = 2• D. $x = \frac{2}{5}$

18. The solution set of an inequality is shown below.

Which inequality has the solution set shown on the number line?

A.
$$\frac{x}{9} \le \frac{2}{3}$$

B. $\frac{-x}{9} \le \frac{-2}{3}$
C. $\frac{x}{9} \le \frac{-2}{3}$
D. $\frac{-x}{9} \le \frac{2}{3}$