				General Co					
1.	In the I	Haber prod	cess for the $_2 + 3H_2 -$	e producti	on of an	nmonia,			
Wh	at is the			en the rate	of prod	uction of	ammonia	and the r	ate of
con	sumptio	on of hydr	ogen? (R	ate express	sion)				
2.	Calcula	te the ave	rage rate	over an in	terval of	time, give	en the cor	ncentratio	ns of a
				eginning a					
The dec	composi	tion of hy	drogen p	eroxide wa	as studie	d. and the	followin	g data we	re
				e: 2H ₂ O ₂				8 mmm 17 c	
Time	0	120	300	600	1200	1800	2400	3000	3600
(s)									
[H2O2] (M)	1.0	0.91	0.78	0.59	0.37	0.22	0.13	0.082	0.05
[H ₂ O]									
(M) [O ₂]		-		-		11 1 1	11.111	e real to	ter out i
(M)	15	A Comment	a life.	11-21-54				L bot	
0.1.1.			51.,,						
1800 s.	ie ine av	rerage rate	e of disap	pearance o	of hydrog	gen perox	ide betwe	een 120 s	and
							*1		
Calculat	e the av	erage rate	of appea	rance of v	vater bet	ween 600	s and 24	00 s.	
					uri Atrodes	hun oten e	ata in a sa		
					en presun				
						-		-	
			ofanna	rance of o	xvgen h	etween 24	loo s and	3600 c	
Calculate	e the ave	erage rate	or appea	direct of o	Aygen b	oth con 2-	oo s ana	5000 3.	

3. Calculate instantaneous rates from a graph of reactant or product concentrations as a function of time.

The decomposition of dinitrogen pentoxide in the gas phase was studied at constant temperature. $2N_2O_5 \rightarrow 4NO_2 + O_2$

The following data was collected.

Time (s)	$[N_2O_5](M)$
0.0	0.1000
50	0.0707
100	0.0500
200	0.0250
300	0.0125
400	0.00625

Using your graphing calculator, determine the instantaneous rates in M/s at (a) t = 2.5 min and (b) t = 350 sec.

4. Determine the rate law from experimental results. Calculate the rate, rate constant, or reactant concentration given two of these.

The reaction $2NO + Cl_2 + 2NOC1$

Was studied at -10°C. The following results were obtained:

[NO] (M)	[Cl ₂] (M)	Initial Rate (M/s)
0.10	0.10	0.18
0.10	0.20	0.36
0.20	0.20	1.45

Express the rate law.

Calculate the magnitude of the rate constant, include units.

5. The following data were obtained for the reaction $2ClO_2 + 2OH^{-1} \rightarrow ClO_3^{-1} + ClO_2^{-1} + H_2O$

[ClO ₂] (M)	[OH ⁻¹] (M)	Initial Rate (M/s)
0.050	0.100	5.75×10^{-2}
0.100	0.100	2.3 x 10 ⁻¹
0.100	0.050	1.15×10^{-1}

Determine the rate law.

Calculate the value of the rate constant:	

How is the rate of appearance of ClO₃⁻¹ related to the rate of disappearance of OH⁻¹?

What is the rate of disappearance of OH^{-1} when $[OH^{-1}] = 0.065$ M and $[ClO_2] = 0.15$ M?

Objective 2: Reaction Rates: First and Second Order

1. Calculate the concentration of a reactant or product at any time after a reaction has started.

The decomposition of phosphine (PH₃) is first order with respect to the reactant. It takes 120 seconds for 1.0 M PH₃ to decrease to 0.25 M. How much time is required for 2.0 M PH₃ to decrease to a concentration of 0.35 M?

2. Calculate rate constant and half-life for a first-order or second order reaction. The rate of the reaction $NO_2 + CO \rightarrow NO + CO_2$ depends only on the concentration of nitrogen dioxide below 225 degrees Celsius. At an appropriate temperature, the following data were collected.

Time (s)	0	1200	300	0 4	500	9000	18000
[NO ₂]	0.500	0,444	0.38	31 / 0).340	0.250	0.174
In [NO ₂]							
1/[NO ₂]							

Determine the rate law AND the value of the rate constant, k.

and

Objective 3: Factors Influencing Reaction Rates: Temperature and Activation Energy

1. The rate constant for the gas-phase decomposition of dinitrogen pentoxide, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$

Has the following temperature dependence:

T (K)	k (s ⁻¹)
338	0.0049
318	0.0005
298	.000035

From these data, calculate the activation energy using the nongraphing form of the Arrhenius equation in units of kJ/mol. Show all work.

W	hat	is	the	rate	constant	at	300	K?