PhET: Gas Properties

Introduction: You will investigate the relationship between pressure, volume & temperature in gases.

- Go to http://phet.colorado.edu/en/simulation/gas-properties
- Click "Run Now"
- This picture should appear on your screen (right):

Explore:

- For the next 5 minutes become familiar with the simulation. Change various features, sliders, buttons, click-and-drag items, etc.
- While you are exploring, notice how the heat control affects the gas particles.
- Next: Click "Reset All" and conduct the following investigation.

Set Up:

- Make sure the constant parameter is clicked on **volume**.
- Make sure gravity is set on 0.
- In the area under "Gas in Chamber" (top right) add 50 "Light Species" and 50 "Heavy Species" in the gas chamber.
- Next, "Tools & Options" click on "Measurement Tools" and check "Stop Watch" "Species Information" and "Energy Histograms."
- Your screen should now look like the one below. Please raise your hand for help before proceeding if needed.

Period:

	Get the PhET ready:	
Activity A:	 The starting temperature should be 300°K (On the Kelvin scale, 0 degrees is absolute zero, the coldest possible temperature. Absolute zero is equal to -273.15 °C or -459.67 °F) 	

Question: How does temperature affect the Kinetic Energy of a gas when volume is constant?

"The **kinetic theory of matter** states that all **matter** is made of small particles that are in random motion and that have space between them. This means that no **matter** what phase **matter** is in, it is made of separate, moving particles."

- 1. <u>Observe</u> the motion of the particles for 10-30 seconds. From what you observed, do you agree with the definition above for the "Kinetic Theory of Matter?" YES NO
- 2. Using the "Heat Control" slider, "Remove" heat from the test area until the internal temperature is 0°K (or absolute zero). Observe the Kinetic Energy and Speed of particles as they change in the graph.
- 3. Using the "Heat Control" slider, "Add" heat to the test area until the internal temperature is 3000°K. Observe the Kinetic Energy and Speed of particles as they change in the graph.
- 4. _____What is happening to the pressure gauge as the temperature increases?
 - A. The pressure increases C. The pressure remains the same
 - B. The pressure decreases
 - D. The pressure decreases then increases.

B. All particles stopped moving

- 5. ____Continue to add heat to the test area until 5000-6000 °K. Watch your little guy on the side. In your opinion, what does he appear to be doing as the temperature is going up?
 - A. NappingB. RelaxingC. Pushing harder and harderD. The whip nae nae
- 6. _____What event did you observe as the temperature approached 5000-6000 °K?
 - A. The blue particles stopped moving
 - C. The red particles stopped moving
- stopped moving D. The lid blew off
- 7. _____How does temperature affect the kinetic energy in matter?
 - A. As temperature goes up, energy goes up
 - B. As temperature goes down, energy goes up
 - C. As temperature goes up, energy remains the same
 - D. Energy is not affected by the temperature of matter

- 1. Slide your little guy left to create a larger volume for the particles. Observe the temperature.
- 2. Slide your little guy right to create a smaller volume for the particles. Observe the temperature.
- 3. Write a rule that is true for all matter by filling in the space with the correct term.
- As the volume of a gas decreases, the temperature of that gas will _____ .
- As the volume of a gas increases, the temperature of that gas will

Activity C:	 <u>Get the PhET ready</u>: Click Reset Add 200 "Light Species" and 0 "Heavy Species" Set Constant parameter to "None." 	
-------------	---	--

Question: How does volume affect the pressure of a gas?

- 1. Add the 200 light species and let the simulation run for 5-10 seconds. Record the pressure in the table below.
- 2. Slide your little guy as far to the left as you can creating the largest possible volume. Let the simulation run for 5-10 seconds and record the pressure in the table below.
- 3. Slide your little guy as far to the right as you can creating the smallest possible volume. Let the simulation run for 5-10 seconds and record the pressure (or maximum pressure reached) in the table below.

	Pressure (Atmospheres: Atm)
#1 Starting Pressure (Middle sized volume)	
#2 Largest Volume	
#3 Smallest Volume	

4. How does volume affect the pressure of a gas? Tell me about the pattern that you observed.

Activity D:	 <u>Get the PhET ready</u>: Click Reset Add 20 "Heavy Species" Set Constant parameter to "None." 	
-------------	---	--

Application: Let's Blow this Pop Stand!

Part 1: Your mission is to blow the lid off of the test area by changing **ONLY** two variables.

<u>Hypothesis:</u> Check below the **TWO** variables you believe will result in the lid blowing off of the test area.

	_ add heat		_ remove heat		add light species	
	_ make larger volume		_ make smaller volume		add heavy species	
	_ remove heavy species					
<u>Test your</u>	hypothesis: Did you succes	ssfully	blow the lid off of the test	area?	YES NO	
Data: If you answered "NO" above, make and test a new experiment before proceeding.						
Data: If yo added; ten	ou answered "YES" above, plo nperature or pressure when l	ease r id blev	ecord the data from your e w etc.)	experime	nt (i.e.: # light species	
Change #'	1 data					
Change #2	2 data					

Part 2: Discover a second way to blow the lid off of the test area by changing **ONLY** two variables that you did not change in part 1.

<u>Hypothesis:</u> Check below the **TWO** variables you believe will result in the lid blowing off of the test area.

_____add heat _____remove heat _____add light species

____ make larger volume ____ make smaller volume ____ add heavy species

_____ remove heavy species

Test your hypothesis: Did you successfully blow the lid off of the test area? YES NO

Data: If you answered "YES" above, please record the data from your experiment (i.e.: # light species added; temperature or pressure when lid blew etc.)

Change #1 data _______
Change #2 data ______